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The dielectric response at frequency w (neglecting retardation) of an idealized metal with two plane
parallel surfaces is calculated in the Hartree approximation, with special emphasis on the limit of infinite
thickness. It is assumed that the unperturbed system may be regarded as consisting of free particles confined
between plane parallel boundaries. The validity of this approximation is discussed. The response is expressed
in terms of the perturbing source potential in Fourier representation, and involves the inverse of an
infinite matrix E; E is calculated in the limit of infinite interfacial separation at =0 and at w0 for one-
dimensional potentials. A dielectric function eg (), where Q is a wave vector parallel to the surface, is intro-
duced, which is inversely proportional to the sum of all elements in E-1. The surface-plasmon dispersion re-
Jation is given implicitly by eq(w)+1=0. The classical image theorem for a semi-infinite dielectric medium
is obeyed at a given Q and w if eg (w) replaces the classical dielectric constant. The Fermi-Thomas approxi-
mation, the lowest-order correction to it, and the classical (high-frequency) approximation are derived. In
agreement with earlier work, the corrections to the classical approximation, which relate to the damping
and dispersion of surface plasmons, are found to be linear in the wave vector. Numerical results are obtained
for a uniform static electric field normal to the surface. The calculated screening length 4 is well
approximated by d~\"14-3\p, where A1 is the Fermi-Thomas screening length and A the Fermi wave-
length, the second term representing the lowest quantum correction; this result is 2-3 times A in the
metallic density range, owing almost entirely to the low electron density in the surface region. The results
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are compared with experiment. The long-range Friedel oscillations are discussed in an appendix.

I. INTRODUCTION

HE dielectric response of a metal surface to some
perturbing potential, which may be time de-
pendent, plays an important role in a number of surface
phenomena. Thus the interaction energy between an
ion a short distance outside the surface and the induced
charged density contributes to the energy of ionic and
polar chemisorption,’ and enters the energetics of field
evaporation,? and desorption.>* The adsorbate ions
and their induced charge constitute a dipole layer which
produces a change in work function.:® The dielectric
response of the metal surface is fundamental to the
weaker interaction of physical adsorption,® and in addi-
tion this response should be included in treatments of
the rather complex problem of covalent chemisorp-
tion.”:® Essentially macroscopic theories of optical
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reflectivity’ and surface plasmon excitation!®!! are
usually valid under normal long-wavelength conditions,
but we shall find that microscopic characteristics enter
into the Landau damping of surface plasmons. We
shall here restrict ourselves to the linear dielectric re-
sponse, although nonlinear effects may play a subsidiary
role in some of the problems mentioned above.

The random phase approximation (RPA)® provides
a quite successful model of the linear bulk dielectric
response of a simple metal, in which scattering by the
ion cores may be neglected. The metal may then be
replaced by a “jellium’” model in which the cores are
spread out into a uniform distribution of positive
charge. The RPA dielectric function may also be de-
rived from the time-dependent Hartree approxima-
tion,® and it is this formulation which we shall employ;
the success of static Hartree theory in treating non-
uniform systems such as atoms suggests the applica-
bility of this approach to the present problem. The
jellium approximation will also be invoked, so that
translational symmetry is retained in directions parallel
to the surface. The equivalent of the unperturbed
plane-wave eigenstates which form the starting point
for treating the bulk electron gas will now be the set of
one-particle eigenstates belonging to the effective one-
electron Hamiltonian of the semi-infinite metal. This
Hamiltonian includes the appropriately defined self-
consistent potential at the idealized jellium surface.
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Fi16. 1. Charge density of electron gas at metal surface. Solid lineJrefers to infinite square barrier in region x <0, assuming free elec-
trons, and remaining curves to self-consistent calculations of Lang (see text for details). po is density in interior of metal. Unit =/kr

equals one half-Fermi wavelength.

We shall, in the following, adopt the simplest
approximation to the unperturbed wave functions in
assuming the potential to form an infinite square barrier
at the surface. If the surface is formed by the x=0
plane, we take V(x)=c for x<0 and V(x)=0 for
2>0. The eigenstates now take the well-known form
Y (x) < exp[i(k,y+k.z)] sinkx, and the unperturbed
charge density is easily shown to be'#:1

p(x") =po[ 143 cosx’/x"2—3 sinx’/«'%], (1)

where
x' = 2kpx N

kr is the Fermi wave vector kr= (37210)!/3, and no=po/e
is the electron density in the interior of the metal.
Equation (1) is illustrated by the full curve in Fig. 1,
from which it is evident that the charge density
deviates significantly from its bulk value only within
a distance of about %-Fermi wavelength from the
surface.

In fact a more realistic representation of the electron
distribution at the surface of a simple metal is provided
by the semi-infinite jellium model, in which the positive
charge distribution is taken as a step function at the
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surface. The electronic wave functions and the self-con-
sistent potential may in this case be obtained from the
solution of the Hartree-Fock equations, with some
allowance for correlation, as approximately carried out
by Bardeen.’® Recent calculations include those of
Bennett and Duke,!® Smith!” (employing a semiclassical
method), and Lang.'® Now it was shown by Bardeen!®
that on addition of the step-function charge distribution

x>31l'/8kp

to Eq. (1), the resulting distribution satisfies the re-
quirement of charge neutrality in the interior of the
metal, a result readily derived from the phase-shift
sum rule of Sugiyama.’ Hence it is appropriate to
compare the charge distribution (1) with self-consistent
calculations made from the semi-infinite jellium model
provided the step-function jellium distribution is taken
as lying in the region x>3n/8kr. Such a comparison
with the calculations of Lang!® is shown in Fig. 1.
The charge distribution at 7,=35 is similar to that of
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Eq. (1) except for the presence of a tail at x<0, a con-
clusion also arrived at by Bardeen in his work at r,=4.
At r,=2 the distribution is in much poorer agreement
with the infinite barrier model. It may be argued that
the behavior of the wave functions should resemble
that of the charge distributions. If the surface potential
barrier sufficiently exceeds the Fermi energy, then at
large enough x for the potential to be negligible the
wave functions will take the form

Y(x) < exp[2(k,y+k.2)] sink.(x+a),

where the scattering length @ is approximately inde-
pendent of k.. The requirement of charge neutrality
demands that =0 so that in the region where V (x)~0
(i.e., for x=>3w/8kr at r,=>5) 18 the wave functions will
be similar to those in the infinite barrier model. Con-
tinuity will ensure that this similarity remains for some
distance into the barrier, though breaking down in
the tail region. Since the high barrier limit seems to be
approached in Lang’s #,=35 calculation, the infinite
square barrier model should represent a fair approxima-
tion to semi-infinite jellium at 7,=4-5 if the contribu-
tion to the dielectric response from the tail region is
small; the latter will in any case be subject to modifica-
tion in the presence of adsorbed atoms. It should how-
ever be noted that the validity of the RPA is itself
questionable in this density region. At 7,~2 the infinite
barrier model may represent a poor approximation to
semi-infinite jellium, and the applicability of semi-
classical methods!” here might be worth investigating.

It is worth discussing qualitatively the main effects
distinguishing the response of the semi-infinite gas from
the bulk response. The first stage in the Hartree calcu-
lation is the determination of the one-particle response,
in which the Coulomb interactions between the elec-
trons are neglected. It is desired to find the change in
charge density 8p(x) due to a small perturbing po-
tential ¥ (x). The one-particle response to a static and
spatially homogeneous potential ¥V may be obtained
by differentiating (1) with respect to the Fermi level,

the result being
Vkr sinz’
dp(x)= ——(1— ‘—’—) , 2)
%

T B

where 75 is the Bohr radius. Equation (2) is plotted as
the dotted curve in Fig. 3, in which the response dp is
seen to deviate markedly from spatial homogeneity
near the surface, where it necessarily satisfies the condi-
tion 8p=0. If we express V(x) and 6p(X) in terms of
their Fourier components V4 and 8pg, then we may say
that the single component ¥V, of potential gives rise to
a range of charge density components dpq. Conservation
of momentum q equally fails for other components V4
of potential. This is in contrast with the case of the
homogeneous electron gas, where conservation of mo-
mentum greatly simplifies the treatment; in particular,
it is possible to define a response function Rq=0pq/V .
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In the present case the response function must un-
avoidably be generalized to a response matrix.

Once the relation between p(x) and V (x) is known,
it becomes necessary, in order to achieve self-con-
sistency, to calculate the electrostatic potential of the
charge density dp. The consequent introduction of elec-
trostatic boundary conditions at the surface of the
system constitutes the second modification to the
problem of the homogeneous electron gas. An important
and well-known physical consequence of the boundary
conditions, which introduce the vacuum half-space
into the problem, is that a static exterior charge is not
screened in directions parallel to the surface. As is
intuitively reasonable, the Fermi-Thomas®:?' approxi-
mation is found below to be valid at sufficiently high
electron densities; this approximation correctly in-
cludes the boundary conditions just mentioned, while
neglecting nondiagonality of the response matrix. It is
shown below that the nondiagonal elements are re-
sponsible for the lowest order correction to the Fermi-
Thomas approximation, which arises from the require-
ment that the charge density be zero at the surface.

A number of papers treating the dielectric response of
the semi-infinite electron gas are available,?~2" exclud-
ing purely classical calculations, references to which
may be found in Ref. 27. The work of Fedders®? on
the infinite square barrier model is based on the equa-
tion of motion for the two-particle Green’s function
within the RPA, from which a complicated integral
equation for the response functions is at length derived;
on putting the coulomb interaction equal to zero a
free-electron response matrix is obtained which is
essentially identical to that calculated below. Fedders
finds the dispersion and damping corrections to the
classical surface plasmon frequency to be linear in
wave vector, a result also obtained by Guernsey? for a
semi-infinite classical plasma, although the coefficients
of these corrections are not calculated. Ritchie and
Marusak? had earlier determined both the linear be-
havior and the coefficients by neglecting the non-
diagonal elements of the response matrix, but the
justification for this approximation is not very clear.
The work of Gerlach® and Gadzuk® on the infinite
barrier model is in some respects closer to the self-
consistent field approach discussed below. Gerlach®
however significantly departs from the methods of
Fedders, Gadzuk, and the present author in choosing
sine rather than cosine Fourier transforms, a choice
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Molecular Processes on Solid Surfaces, Frankfurt, 1968, edited by
E. Drauglis, R. D. Gretz, and R. I. Jaffee (McGraw-Hill Book Co.,
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which permits scattering out of the discrete set of
allowed momenta normal to the surface (assuming slab
geometry). Gerlach concludes that the Lindhard dielec-
tric function may still be employed at the surface, a
result in disagreement with the present work; in par-
ticular we find that the major contributions both to the
screening length and the amplitude of the one-dimen-
sional Friedel oscillations derives from the nondiagonal
rather than the diagonal or Lindhard part of the re-
sponse matrix. The neglect of nondiagonality is also a
defect in the treatment of Gadzuk, in addition to
which the imaging theorem employed by this author in
solving the self-consistency problem would appear to be
correct only for one-dimensional potentials. Feibelman?
gives a quantum derivation of what is essentially the
time Fourier transform of Laplace’s equation for a
nonuniform dielectric, the local dielectric function being
e=1—w,?/w?, where the plasma frequency w, depends
on the local electron density #¢ via w,?=4wnqe?/m. The
validity of this is presumably confined to density
variations of longer wavelength than that of the
plasmon—a serious limitation. Feibelman then goes
on to develop an interesting perturbation treatment
of Landau damping, the coefficient of the linear varia-
tion of damping with wave vector being calculated. The
corresponding coefficient of dispersion is however found
to be zero. In comparing this with other work, Feibel-
man’s assumption of a step-function electron density
distribution at the surface should be borne in mind.

The present paper begins by recalculating Fedder’s
free-electron-response matrix by a related method,
though making an initial separation of the potential
into symmetric and antisymmetric parts. The matrix
is then calculated in special cases (Sec. IT and Appendix
A). The self-consistency problem is formally solved in
Sec. ITI, by a straightforward application of the differ-
ential equations of electrostatics rather than Fedder’s
difficult integral-equation approach. The results appear
in a form simply related to the classical electrostatics of
a semi-infinite dielectric. Explicit calculation requires
inversion of a matrix trivially related to the one-
electron-response matrix, this being simplest in the
static case when the matrix is real. Two limiting cases
are discussed in Sec. IV A and IV B, and a one-dimen-
sional static calculation is carried out numerically in
Sec. IV C. A suggestion is also made concerning the
calculation of corrections to the classical (high-fre-
quency) limiting formula; we are in agreement with
Fedders in finding these to be linear in wave number.
The results are discussed, and compared with the rather
limited experimental data, in Sec. V.

- II. INDEPENDENT PARTICLE RESPONSE

We begin by calculating the linear response of the
system to a perturbing potential V(x,f) in the Hamil-
tonian, assuming the electrons to be noninteracting,
and subsequently impose the Hartree self-consistency
requirement. Let the change in electron density of the
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noninteracting system be oz (x,). The self-consistency
condition is then

UED+eExN=V(x1), ©)

where ¢ is the potential due to the charge density
dp=edn, and U the source potential which may be
assumed to arise from some external source charge
distribution.

The response 8p may be obtained from the expression?

¢
3o (x,6) = f ar / PHYRELX VL) (@)
0

where (employing Z=1 units) the response function R
is defined by

R(x:t:xl)tl) =16 Z/ (¢°l [:9'7 (X',t’),gg/ (X,t):l ‘ ¢0> ) (5)
0o (X,t) = Z Ct'o'T (t)ch (t) (915* (X) (2] (X) . (6)

The perturbation is assumed to be switched on at £=0.
The density operator g, for spin ¢ is defined in terms of
the creation and destruction operators C;,, C;, corre-
sponding to the one-particle wave functions ¢:(x) of
the unperturbed system, these operators being all in the
interaction representation. |¢,) is the time-independent
Heisenberg ground state of the unperturbed system.
In the absence of the interparticle interactions

Cic(t) = %itCy, (7

where %w;=e¢; is the energy eigenvalue of ¢;. The time
dependence may then be factored out of the commutator
in (5). Now

(¢0] [Cis'C10,Cio'Cro ]| o) =[f () — f (1) Pisdssdoer,  (8)
where, assuming 7'=0,
f@) =1, e&<ep
=0, €>e€p.
From (4), (7), and (8),
R(x, ¥, =) =2ie 5, [1) = J () Jetes-mi 40
ij

Xo#(x) i) e (®)ei(x).  (9)

The Fourier transform of a function f(r) of time is
defined as

1@)= [ erpieyin (10)
0
Hence, in Fourier representation
Sp(x,0)= f ' R(x,x',w)V (x'w), (11)
Rx ) =285 JF@&)—7() '
i w;—w;+w—ia
X (x)pi(x)o*(X)ei(x), (12)

28 R, Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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where « is an infinitesimal positive constant. Equations
(11) and (12) give the linear response of any large
system of noninteracting fermions.

Let the physical surfaces of the electron gas form the
planes x=0 and =/ of a Cartesian coordinate system.
The potential will be assumed zero within the metal
and infinite outside it,

V(x)=0,

=00,

o<x<l

x<0, x2>1. (13)

The remaining boundaries are taken to be the planes
y==L, z=4L, at which the boundary conditions are
assumed periodic. The normalized eigenfunctions are

|K k)= (2L%)1/2%-X sinfy

ki=(mw/l), m;=1,2,3,..., i=x
=(maw/L), m;=0,1,£2 ..., i=v,3
(K,k|K'E ) =bxx:bpr » (14)
We here adopt the convention
K= (ky k),
k=k., (15)
X=(y,2),

so that k= (k.k,k.;)=K,k), and x=(x,7,3)=(X,x).
From (12) and (14)

¢ Z f(K7k)_f(Kl:kl>
2042 XK’ k>0 (K k) —w(K k) +w—ia
(16)

R(x,x'w)=

X et (K=K - X—X') ginky! sink’s’ sinkx sink’x.

This is the basic linear response function in the x
representation for the noninteracting electron gas
bounded by two parallel planes.

The self-consistency problem is in general more trac-
table when expressed in Fourier representation than in
x representation. The space Fourier transform of a
function #(x) may be defined as follows:

uq=/d3xe"°'x cosqx #(x), 17)

where 9 is the volume of the IX2LX2L system. The
choice of the cosgx transform in (17) leads to rational
momenta in the response function, as is not the case for
sine or exponential transforms, a result previously found
by Fedders®? and by Gadzuk.”® For simplicity we shall
in the following confine ourselves to odd functions
u(x) = —u(l—x), since the parity of the potential is not
important when [ — <0 and the perturbation is localized
near the surfaces. More general potentials are considered
in Sec. III. The inverse transform is then

(18a)

Cu(x)= > > e QX cosgrug.

212 Q@ ¢>0
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In (18a) and in the following ¢= (2n+1)x/l, n=0, 1, 2
.... Thus

1
u(X) = — /daqe—io'x COSqX %g.

l-> 47['3

(18b)

The integration in (18b) being over the ¢>0
half-space.

Using (17) and (18) together with the expression
(11) for 8p(x) and the definition (12) of R(x,x',w),
we have

5Pq(“’) =2 Ro,0.0(@)Ve,y(w), (19a)
q/
l
=— [d¢'Ro,q,0Va,¢ (), (19b)
2w

with the definition (17) of the Fourier transforms dp,
and Vg. Rq,q,¢ Is given by

2
Ro,q,¢ (@)= 'l"de(X—X/>dxdx’giQ-(X—X’)

Xcosgx cosqg’x’R(x,x'\w). (20)
The factor 2/1 is here introduced for convenience. In
order to evaluate (20), we shall find it a considerable
simplification to remove the restriction that % and &’
take only positive values in the summation (16), thus
introducing a factor + into (16). However, we shall
continue to require that ¢>0, ¢'>0. We also adopt the

abbreviation

JE ) —f(K" k)

F(K,EK'E)= .
oK E)—oX k) Fw—ia

1)
On substituting (16) into (20), and using the relations
1
/ dx sink’x sinkx cosgx
0

(22a)

=310w bra 00 g8k k0= —k1d)

/deei(K—K')~X=4L2§K,K, , (22b)

where the second integration is over the basic 2L X2L
area in the X plane, then we find

62

2. FXK kL K+Q, %)
16121 X k.5

Ro,q,0=
X0k it a—0k —b—q— Ok’ , g 017 ,i—g |
X[8w hora =0k —tq? — Ok , @'~k h—gr ] (23)

On using the property that the function /' depends
only on the moduli of its arguments (23) may be
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simplified to the expression

2

R Z { Z F(K7 k: K+Q7 k+(]>5qq'
417 X k=

—F[K, 3(¢+¢),K+Q,3(¢—¢")]
—F(K, 3(¢—9),K+Q,3(¢+¢)]}.

Impermissible terms requiring ¢<0 or ¢’<0 have been
omitted.
It is convenient to write (24) in the form

RQ,q,q’=

(24)

RQ,q,q’zpovqﬁqq’_AQ.q,q’: (25)
where in the limits L —« and [ — o
¢ (k)—f(k+a)
Do, o(w)=— / ! @k=Dq(w),
473 ) w(k+q)—wk)to—ia
(26)

Aorgw (@)= 4—7 / (FTK, }(¢-+¢), K+Q, 3 (9—¢)]

+F[K, 3(¢'—9), K+Q, 3 (¢+¢) 3K, (27)
the integral (26) being over all k space. If L-—w
but 7 is kept finite, in which case the theory applies to
an infinite film of thickness J, A is still defined by (27)
whereas f'dk is replaced by /13" *:_  in Eq. (26),
[or D may be defined by (30) below]. Equations (25)-
(27) had been earlier obtained by Fedders,”? who does
not, however, separate the symmetric and antisym-
metric parts of V. Fedders differs in subtracting off
AQ,q,q, an error which vanishes as [ —.

The response matrix is seen to consist of a diagonal
part D and a nondiagonal part A, which is symmetric
in ¢ and ¢’. The diagonal part is seen from (26) to be
identical with the well-known response function of a
noninteracting Fermi gas subject to periodic boundary
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conditions. If this were not so then the effect of the
boundary conditions would be to modify the response
deep within the gas, which is not to be expected even
in the absence of any Coulomb interaction between
the particles. The nondiagonal terms should give rise to
a contribution to the response localized near the planes
x=0 and x=/.

The response 8p must be zero at x=0 for each com-
ponent Vs , of potential. If Vp , is the only nonzero
component of the perturbation, then from (19a) and
(18b)

2
dpo(x)= p 2. €08qx pq
q

2
= EBp,qu,,, > Rp,q,pcosgx, (28)
q

so that

6pp(0)=21_1meZ Rp,q,p. (29)
q

Hence if (29) is to be zero, then from (25)

2 Ae.q.0=Da.q (30)
ql

Now on substituting k=—%(¢+¢’) in the first term
and k=%(g—¢’) in the second it is evident that

2. FIK, 3(g+¢), K+Q, 3(¢—¢)]
+2 F[K, 3(¢'—9), K+Q, 3(¢+¢)]

a>0

— Y F(K & K+Q, ktq).

k=—c0

Multiplying this equation by €2/4x?%, and integrating
over K, we see that on referring to (26) and (27) the
sum rule (30) is verified. Equation (30) will later prove
to be useful. 4 q,4,, may be written explicitly as

2¢?
AQ,q,0=—— d2K<
82l

which may be rewritten

1) =

o[K+Q, 3(¢g—¢)]—e[K, 3(¢+¢) JH+w—ia

o[K+Q, 3(g+¢)]—w[K, 3(¢—¢) ]+w—ia

Ao,q,a
47

2¢* P/'d2K{fEK, 2(¢—q)]—[TK+Q, 3 (¢+¢) He[K+Q, 3(¢+¢)1—u[K, 3(g—¢) ]}
{[K4Q, 5(¢+¢)]—w[K, 3(g—¢) ]}*—u?

) (32)

2 2
Aoge®= g} / PE{TK, 3 (g—¢)]—TK+Q, 3 (a+-a) T}

X {w+w[K+Q, 3(¢+¢)]—u[K, 5(¢—¢) I} +6{w—o[K+Q, 3 (¢+¢) ] +w[K, :(¢—¢) T},

(33)

where A® and A® are the real and imaginary parts of A, respectively.
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Fic. 2. Nondiagonal part A of one-electron response matrix.
Elements of A in regions g, b, and ¢ are given by Egs. (35a)—-(36c),
respectively, and are zero in unshaded region. Broken curve shows
alternative boundary between b and c.

The integrals (32) and (33) are straightforward, the
results being somewhat complex for wz0. Expressions
for D and A in the special case of zero frequency are
given below, and for Q=0 and nonzero w in Appendix A.
It is convenient to write

b=CI/2kF, b’=q’/2kp,
B=Q/2kp.
Then
N2 1—1|b|®) |1+|Db|
Da0)= —(3+ ml ). 60
4 4|b]| 1—|b|
TFor b<b’ then, Ag,s,» is given by the following:
Ifo'>140,
App,e=0.
If1-b<b'<1+0,
)\2
Ap,p, 0=
8kplB?
X{B*+bb' —[ 0%+ B2 (0>+b2+B*—1) ]}, (35a)
If
:—Re@—BY)12<h<1-0
or :
¥ <ReB[(1—b"2—B?)/(b"*+B?) 2,
AB,b,b' =)\2/4k12’l. (35b)
If
b<i—Re(}—B2)12
and
ReB[(1—0"2—B2)/(b2+B2) 12 <b' <1—b,
A2
AB,p, =
4k plB?
X{B*—[b%"+B*(p*+b2+B*—1) ]2} . (35¢)

If >0, Agsr=Asp,5- Here N is the Fermi-
Thomas screening wave number given by

)\2=47FG2N(6F) =4kp/7TfB ) (36)

xke/m

Fic. 3. Response in surface region to a perturbation V cosgx
neglecting interelectronic interactions, for the cases ¢=0, kr, and
2kr. Solid lines give the total change in charge density 8p, and
dashed and dotted curves the surface or nondiagonal contribution
to 8p. dpmax=A2V/4x is the limiting response at large distances
from surface when ¢=0.

where N (ep) is the density of states at the Fermi level,
and rp the Bohr radius.

The matrix A is sketched in Fig. 2 for the case w=0.
When ¢+q'>2kr, Ayy is given by (35a) near the
diagonal, but is zero if |g—¢’| > 2kr. Referring to (19),
it will be clear that this implies that an external per-
turbation Vo, cannot give rise to Fourier components
of 8po, outside the range ¢—2kp<q’'<q-+2kp. This is
to be expected since the highest Fourier component of
charge density behaves like cos2kpx. The region
g+q' <2kp is divided into two parts when 0<Q<kr,
with the area in which 4,4, is a constant given by
(35b) increasing as Q decreases and occupying the whole
region at Q=0.

In the one-dimensional case Q =0 the matrix elements
at zero frequency are given by the simple relations

)\2
A (0)= —
wO=1n

F

for b-+b'<1 (37a)

~ ( N \[1—(p—5)7]
N6 ]

b+b'>1 and |6—0'| <1 (37b)
|6—0'|>1. (37¢)

=0’

From (35) the zero frequency matrix elements may
be shown to lie in the range

0<Agpyy (0)<\/Alkp.

The sum rule (30) provides a check on (35).
The response to a static one-dimensional potential

(38)

V({x)=V cosgx

affords a simple illustration of the one-electron response.
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8p(x) may be calculated from (28) and (37), the results
in the limit /—c being given for several values of ¢
in Fig. 3. The response differs significantly from that of
a homogeneous electron gas only within a distance
~kp~! from the surface, as is to be expected. If ¢— 0
we obtain the simple analytical result

Sp=V\ (47!')%1[1 - (sinkax)/ZkFx]

which was derived by an elementary method above
[see Eq. (2)].

III. SELF-CONSISTENCY

The self-consistent response may now be calculated
by introducing Eq. (3) connecting the self-consistent
potential V' with the source potential U due to an
external charge. Retardation effects will be neglected
in the following. The explicit dependence on w will fre-
quently be omitted. From (3) and (10) we have

Uxw)+o(xw)=V(xw). (39)

We now operate on this with ¢?®¥ cosgxV? and inte-
grate over the JX2LX2L volume v of the electron gas.
Applying Green’s theorem to the right-hand side we
obtain

/ €' QX cosqu(V2U+V2p) d3x

v

= / VV2(cosgxe’@X) d3x
+ / cosqxe’QXVV - dS
s

— / VV(cosgxe’@X)dS. (40)
s

S is the surface of the system, which consists of the
planes x=0 and x=I]. The second surface integral
vanishes at these planes. Introducing the source charge
distribution s(x), and using Poisson’s equation, we have

aX

z=0

1%
— / e"Q'xl:———:I ?X,
ox z=1

employing the definition (17); or, using the presumed
antisymmetry of the potential

drsg=—|q|2Vq—4ndpa—2V ¢ (0), (42)

where here and in the following we introduce the mixed
representation Vo(x) by

] 1%
dm(sqFope)=— |a |V ot / ezo-x[_ ?]
X

(41)

Vo(x)= / ¢ XY (x)d2X (43)
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and the prime in (42) denotes differentiation with re-
spect to x. Substituting (19) for pq we obtain

dmrsq= "'ZVQI(O)"‘ZU qlz‘sqq"f“‘l""RQ.q.q']VQ.q’ , (44)
ql

=_‘2VQ,(0)_Z Eq,q,0Vao,¢, (45)
q’

where

EqQ,q,0=1q|%0g¢+47Rq,q.’- (46)

The matrix E is related to the dielectric matrix, which
would be obtained on dividing (46) by |q|2 In fact we
wish to express V in terms of the source perturbation,
whence on multiplying (45) by the inverse E~

Vao,e==2 Eq,q,¢ [4msq,¢+2Vo (0)]. (47)
q’

If the source charge is far from the surface we may omit
the term 2V ¢’(0) and neglect the nondiagonal elements
of E, when (47) becomes identical with the well-known
result for the homogeneous electron gas,

Vy=Uq/erra(qw), (48a)
where neglecting surface contributions
Uqy=4ns./|q]?
and the RPA dielectric function is given by
erpa(qQ,w) =1+4mD4(w)/] q|2. (48b)

In the present problem Vg'(0) must be determined
from the boundary conditions at the surface. Let us
first restrict ourselves to one-dimensional potentials,
when Q=0. If the electric field is required to be zero
far outside the metal then

V'(O)E[%E]F():flqr/; o(x)dzx,

where o(x) is the source charge at x per unit area.
Evidently o(x) must be antisymmetric, i.e., o(I—x)
=—a(x). Now V¢o'(0)=4L2V’(0), whence dividing (47)
by 4L?

(49)

Ve=—3 Fu,q.0 [dro,+2V'(0)]  (50)
ql

in which V’(0) is given by (49) and, in general, f, is
related to f(x) by

l
fq=/ dx cosqxf(x), (51a)
0

2
flx)= 7 cosgxfa. (51b)

Combining (50) and the inverse transform (51b) we
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have for x>0

l
V(x) = ;—2 /dq cosqx

X f 0qEo g~ [2rog+V'(O)], (52)

where the limit / — o has been taken. Continuation of
the solution into the £<0 region then gives

V(x) = Ay / ' a(x")dx'
—41r‘/:c ¥'o(x)dx'+V(0), (53)
0

where V' (0) is to be obtained from (52). The result for
x>1 is then obtained from the antisymmetry of V
about x=3I. Equations (52) and (53) give the formal
solution to the one-dimensional problem.

We now turn to the general case Q0. Let the regions
2<0, 0<x</, and > be denoted, respectively, by I,
II, and III. Further let U1, U, and U denote the
potentials due to that part of the source charge lying
in the appropriate regions. In the regions outside the
metal it is convenient to work in the mixed (Q,x) repre-
sentation which may be defined for any function by
(43) and its inverse Fourier transform [see Eq. (64)
below]. Now in region I the source potentials Ugo'(x)
and Uq™!(x) together with the potential pq(x) of the
response charge density obey Laplaces’s equation, e.g.,

d?

— U™ () = QU™ (@), (54)

whereas Ug!(x) obeys Poisson’s equation in this region

[d_z _Qz] Uq'(x) =4msq ().

dx?

(55)

The solutions of these equations in the region #<0 are

0o (%) =¢%%po(0), (56a)
UM (x)=¢9=Uqo™(0), (56b)
U™t (%) =e=Uo™M1(0), (56¢)

2 ®
Uol(x)z_{em/ 0o ()0
Q 0

_e—Qa:[ eQa:’SQ(x')dx,} . (Sﬁd)

From (39) and (56),

Vo' (0)=QLUo" (0)+Uo " (0)+¢o(0) ]-QU ™ (0)

=QVq(0)—2QUo'(0). (57)

DENNIS M.
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Now, applying (18b) to (47) we have
2
Vo(0)=— P 2 Eq,q,¢7'[Awse,¢+2Vo'(0)].  (58)
4,9’

Combining (57) and (58) and solving for V¢(0),
VQ (O:w)

~[ovar0u- S—Z—Weow > Bou™ @soale) | /

a,q’

[1+eo(w)], (59)

where
1

@@= L Foau@] )

The dependence on w has here been explicitly re-
stored. From (56d) Uq'(0,w) is given by

2r
Uol(o,w>=—5/ s (#'w)dx’.  (61)

Equation (59) is a significant result, since it gives the
potential at the surface of the metal in terms of the
source charge distribution. It should be noted that the
first term in the numerator of (59) depends only on the
exterior part of the source charge, and the second only
on the interior part.

TFrom (18), (47), and (57)

4
Vo(x,w);o— r > cosqrliq,q,¢ M w)
a,q’

X[27sq,¢ (@) +QVe(0,0) —2QUo" (0w) .
The potential in region I is, from (56) and (39),
VQ (x’w) jerx[VQ (Oaw) - UQI (Oiw)]_l_ l]QI (x7w) 3 <63)

(62)

where Uo! (x,w) is given by (56d) and V¢(0,w) by (59).
V (x) is obtained from (62) or (63) by

1
V)= — f Qe XV o (x). (64)

4r?

The potential in region III is obtained from (63) by
symmetry. The solution is given in principle by (62)
and (63) for any extended source distribution in the
surface region.

An important special case arises if there is no source
charge within the metal, when s,(w) vanishes and (59)
becomes

Vo (0,0) =2Uo" (0,0)/[1+€o(w) I;
hence from (63),

Voliw) = Ugl(ww)+Ua (0 w)eQm(ﬂ> (66)
Q\ Wy 2<0 Q ) Q ) 1+€Q(w) .

(65)
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Now in the region £>0 the potential U?! takes the form

Uol(xw) = Ug!(0w)e 9=, (67)
x>0

With the aid of (67), Eq. (66) may be written

1—eo(w
Volew) =, Uo'(s)+ UoH (=) °§ ;) @
€o (w

Equation (68) is simply the classical image theorem for
a semi-infinite dielectric medium; this states that if
there is a source charge distribution outside the dielec-
tric, then in the external region the induced potential
is equal to the reflection of the source potential in the
surface multiplied by the factor (1—e)/(1+4¢), where €
is the dielectric constant of the medium. Evidently eq
plays the role of the classical dielectric constant,
although because of its Q dependence in the present
problem (68) is valid only for each parallel Fourier
component Q. It should be noted that (68) remains
valid for the antisymmetric potentials considered here
even for a film of finite thickness, the effects of finite !
being incorporated into € in the present formalism.
A practical consequence of Eq. (68) is that any problem
involving only exterior sources may be solved with the
relatively restricted information embodied in eq(w),
which is a function of only two variables, » and Q. In
more general problems it is necessary to work with the
entire matrix E~1. The calculation of eq(w) @ priori
according to the present formalism itself requires in-
version of the E matrix; nevertheless it is an advantage
that the results may for many purposes be presented in
the concise form (60).

The inversion of the E matrix is the central problem
in applying the formalism developed here. It is some-

times convenient to express E71 as an iteration series.
We define

Eq,q.¢ =47"[A0.q'5qq'_AQ,q.q’]: (69)
where from (46)
Aq,q= (4m)H(Q*+¢)+Dq.q- (70)

Aq is related to the dielectric function of the homo-
geneous electron gas by A= |q|%erpa(q,w)/4r [see Eq.
(48b)]. Now

E-'= (4r)[A-+ATAA T+ A~ (AAT)2H- -] (71)

or

dey  Ago
qu,—1=(4,,)_1(ﬁ L A
Ay Ay
Aqq"Aq”q’
___}_...), (72)
@ AfAgrAg

where the suffix Q has been omitted for convenience.
All terms of (72) are of the same order in /, as can be
seen by referring to (30). From the above results (34)
and (38) we see that Dq,, and A g, 4,4 are always positive
at zero frequency. Hence all the terms in (72) are
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positive in this case so that
Eq,q,¢ 1> 084 /4mAy, w=0 (73)
or
Q [®dg N\
0<eQ(0)<<——/ ) , w=0.  (74)
21['2 0 AQ_q

Thus the effect of including the nondiagonal elements
of E is always to decrease the static dielectric function
seen by a charge outside the metal.

From (59) we note that eq(w) plays an important
role even when interior source charges exist, since the
condition for the potentials &=V o(0) at the surfaces to
be infinite is

eo(w)+1=0, (75)

independent of the mode of excitation. Equation (75)
gives implicitly the dispersion relation for the anti-
symmetric surface plasmon modes of a film of thickness
1 or, on taking the limit /— o, the modes of a single
surface. A similar result applies to the symmetric
modes if the definition of eq is modified as described
below. It should be noted that retardation is neglected
in (75), which is therefore inapplicable when QSw/e,
where ¢ is the velocity of light.

For simplicity only charge densities and potentials
antisymmetric about the plane x=%/ have been con-
sidered so far. Since any potential may be expressed as
a linear combination of even and odd potentials, ex-
tension of the above results to symmetric potentials
completes in principle the solution for finite /. When the
function #(x) is symmetric in x—%/, the Fourier series
(18a) takes the form

1
u(x)=-——23 2 ¢ ¥ cosqr g,
212 Q >0

where ¢=2nm/l; n=0, 1, 2, ..., and the discontinuous
factor g, is given by 5,=% when ¢=0 and 5,=1 for
¢>0. A similar modification applies to f(x) in (51b),
and a factor 7,, where p is the summation variable, is
also introduced into Egs. (19a), (29), the sum rule (30),
and (45). The changed parity leads to the following
changes in the principle equations. Thus a factor 1/9,
appears in the diagonal term of (24), and hence Lq,q
is replaced by Dog/n, in (25). The last term in (41)
changes sign, leaving (42) unaffected. On replacing the
definition (46) of E by

Eq,q.¢ =q2aqq'/nq+47rRQ.q,q'

and introducing a factor 1/n, into the definition (69) of
Aq, Egs. (58)-(75) remain unchanged. In the following
it is to be assumed that the potentials are antisymmetric
unless otherwise stated.

IV. APPLICATIONS

Two special cases, the Fermi-Thomas and classical
limits, are of interest as they will be shown to require
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consideration of only the leading term in the series (72).
In addition we shall derive below the lowest-order cor-
rection to the potential in the Fermi-Thomas approxi-
mation, which is smaller than the Fermi-Thomas term
by the factor (A\rz)~L. It should be noted that the
first correction to the Fermi-Thomas approximation in
the case of the homogeneous electron gas is of order
(M\r5)72%; the lower-order correction in the present prob-
lem arises from the large oscillations in 8p in the surface
region due to the requirement that 6p be zero at the
surface itself. In the case of the classical approximation,
valid at small wave vector Q and finite frequency, the
calculation of appropriate corrections unfortunately
proves difficult beyond general observations as to
their form.

In order to extend our results into the region of
metallic electron densities, the matrix E was inverted
numerically for the case of a static one-dimensional
potential. No internal sources were included, so that
the metal surface could be regarded as forming one
plate of a parallel plate condensor. The one-dimensional
solutions may be related to the change in work function
due to a layer of charges lying outisde the surface, an
experimentally measurable quantity. An interesting
finding is that the calculated screening length agrees
rather accurately with the corrected Fermi-Thomas
approximation mentioned above.

A. Fermi-Thomas Limit

The Fermi-Thomas approximation is valid at zero
frequency in the limit of high electron density, which
implies that

NLkp or

A>>rpt. (76)

The potential ¥ is then a solution of the Fermi-Thomas
equation V2V =\2V in source-free regions of the homo-
geneous electron gas.

Let us first consider, from a simple physical stand-
point, the case of the semi-infinite high-density electron
gas subject to a one-dimensional potential such that
the normal electric field V/(0) at the surface is fixed,
there being no internal sources. In the Fermi-Thomas
approximation the potential and charge density dp(x)
per unit surface area are

V(x)=V(0)e ™=,
where V(0)=—TV"(0)/\.

We now make use of the one-dimensional free-elec-
tron response matrix given in Eq. (37). The Fourier
component 8pg of charge density for ¢— 0 may be
defined in the limit }—o. From (19), (34), and (37),
8po is given by .

>\2 1 2kr
Bp(]: ——(Vo"— ——f quQ) .
47!' ZkF 0

According to (17), %8po is the induced charge associated
with a single surface, and may thus be equated to

3p () =NV (0)e/4m,  (77)
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V’(0)/4m, where V'(0) is the normal electric field at
the surface. Hence multiplying the last equation by %,
and converting to x representation by (17), we have

Vi) = —N /

0

12

V(x)(l— Sin%px) 5.

kax

Here integration over the potential at one surface in
the limit /— o is implied. This equation is exact; it
may also be obtained from the sum rule of Sugiyama®
on evaluating the phase shift in Born approximation.
Now deviations from Eq. (77) should take the form of
quantum oscillations in 8p(x) of large amplitude [since
8p(0) must equal zero | but also large wave vector ~ 2.
From Poisson’s equation V(x) will be insensitive to
these oscillations and should be well approximated by
V(x)=V(0) exp(—Ax). Inserting this ansatz into the
last equation we obtain

sin2kpx

)dx (78a)

V7(0)= —\2V (0) f " e—M(1-
0

FX

which should be valid at high electron density. We
might plausibly regard Eq. (78a) as an integration over
the charge density

8p(x) =V (0)A2e [ 1 — (sin2kpx) / 2k pac /4w,

which decays exponentially with superimposed quantum
oscillations such that 8p(0)=0. This charge density is
what would be expected if Eq. (2) giving the response
in the long-wavelength limit were applicable locally
with V=V (0) exp(—Ax). In the high-density limit this
is at least reasonable in the region 0<x<<A~l, where
V (x)=~V (0).

The exact integral of (78a) is not as significant as the
evaluation to lowest order in A/kr, from which we obtain

V(0)=—V' O\ [1+=x\/4kr]+O(N/ks?) . (78D)

Equation (78b) gives the lowest-order correction to the
potential in the Fermi-Thomas approximation.

We now turn to the series (72) for the inverse response
matrix E~L In addition to (76) it will be assumed that

QLrg™t or Q<Kkr. (79)

The second inequality follows from the first and (76).
Now 1/4, is large when ¢< (\2+Q2)'2 but tends to zero
as ¢~2 at large ¢q. Further, according to (38) and (35b),
A 4, has its maximum value (35b) when ¢ and ¢’ are
small provided that Q<kr. The nth term in the series
(72) is a multiple summation over a function which is,
therefore, large only when all the ¢ suffixes lie in the
range ¢< (\HQ%12, ie., ¢<Kkr in the present limit.
A and A may then be approximated by their values in
the region of small ¢

A~ (Ar) QM PN =N/ 12kp2 - - +)
A= )\2/4”314’ = 1/7rl1'3 .

(80a)
(80b)
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If X and Q are sufficiently small the #th term will there-
fore approach the value

[Eoe ]V >bq0/ N+Q*+¢%) ,
4

[qu’_lj(n)g
Irs(+Q+¢) P+ )

(81)

4 n—2
X(Z ——) , n>1.
7" lIrg(NH-Q*-¢'"?)

Let us confine ourselves to calculating eq, defined by
(60), for the case I —. Summing (81) over ¢, ¢’ and
converting all summations to integrations we then
obtain

Lea™ 00/ QN2
© ( : >"—2 n>1.
raO+QI\ra (o))

(82)

[eo ]~

The limiting values (82) of the term [eo™]™ are of
order [75(\2+Q%)V/2]t—=, It is reasonable to assume that
the nth term may be expanded in powers of 7577, an
expansion of which the first term is given by (82). Now
a collection of all terms in 7~ from [eg~1]®---
[eq 1]“+D could in principle be used to form the
(r+1)th term of an expansion of eg™! in powers of 751
It will be assumed that such an expansion converges, at
least asymptotically.

We shall calculate only the terms up to r=1 of the
series for eg™!, which requires knowledge only of
[eo™]® and [eq 1 ]®. From (72) and (80a), [eq]®
is found to contribute the r=0 term, given in (82),
but no linear term. The linear term is thus found by
setting #=2 in (82). Adding these terms we obtain

Q1 =Q(Q N
X147 QN H00/ks)]. (83)

On inserting (83) into (65), and substituting (61) for
Uo®t(0), then our previous one-dimensional result
(78Db) is retrieved on taking the limit Q — 0. In prin-
ciple higher-order corrections could be obtained by an
extension of this procedure.

For completeness we give the general solution of
the Fermi-Thomas equation for a semi-infinite metal
(l — ), assuming only exterior source charge. If only
the first term in parenthesis in (83) is included, then
from (66)

Vo(x) = Uq®(x)

- UQI (O)GQZ}\—2[Q — ()\2+Q2) 1/2]2 .

Similarly, neglecting the last term in parentheses in
(80a), and taking only the first term in the iteration

(84a)
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series (72), we obtain on insertion into (62)
Vo(x) = —20x7U QM (O)[Q— (@*+N)'*]
Xexpl — (Q*HX) ).

It is seen from (84b) that the potential in the metal is
screened at least as rapidly as exp(—Ax) in the direction
normal to the surface.

(84b)

B. Classical Limit

The classical approximation to the dielectric function
erpa(q,w) of the homogeneous electron gas is valid in
the region w>>qur, where vy is the Fermi velocity. erpa
may then be approximated by'?

(85)

where w, is the bulk plasma frequency given by
w,2=4mnoe?/m. This may be regarded as an expansion
in powers of |q| at nonzero w. Correspondingly the
classical approximation to the surface dielectric re-
sponse results from expanding the inverse of the matrix
E in powers of Q when w>£0. Consider the expression
(60) for eg, which on using (72) may be written (sup-
pressing the suffix Q on the right for convenience)

ERPA = 1 —wpz w2—3wp2'l)pzl ql 2/5(,04—]- ety

Q 1 Aqo
e l= —(Z —+ 2
w\ ¢« Ay a9 Ay
A qquA Q'
AL ) . (86)
0,00’ AAgAg

Let us concern ourselves with only the first two terms
in the expansion

eol=at a0+ a0+ -

Evidently ao=0 unless the series in braces in (86)
possesses a singularity at Q =0, whereas a; is obtained
from the Q-independent term in the series. Accordingly
we let Q — 0 in the expression in braces in (86), and
examine the series for singularities. Since Aq,q, is
well behaved when Q— 0, and is confined to the
numerators in (86), the limit Q=0 may be taken in
this function (see Appendix A). The relevant singulari-
ties in the summations of (86) arise from the behavior
of the summands in the region of small ¢; hence we may
employ (85), which is valid when Q — 0 and ¢— 0,
together with the relation Aq(w)=|q|%zrra(q,w)/4m, as
an approximation to A near the singularities. Then the
behavior of the summand of the nth term in the series
(86) when Q — 0 and all arguments ¢;— 0 may be
written as

(87)

n=1

l/AQ.qo'\’ 1/ (Q2+q02) )
AqmnA g2 " -4 qn_an-l/(AQOAtn' o
XAQn_qun_1)~ (QIQZ' . 'Qn—z)z,

(88)
n>1.

It is evident that only the first term is singular and
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contributes to ao. Using (85) and taking the limit J — oo

2Q * dgq < WP\ 7!
0= ={1——) . (89
¢ T(1—w2/w?) ,/0 ¢ w? ) ®9)

Hence using (87),

eo(w)=1—w ¥/ w?—a1Q/ag.

We thus find that when Q — 0 the surface dielectric
function eq(w) approaches the value of the bulk di-
electric function egpa(q,w) in the region |q|— 0, pro-
vided o is finite. This result, which is used widely in,
for example, the theory of optical reflectance,? is of
more general validity than suggested by the present
derivation.

From (75) and (90) the surface plasmon frequency
is given by

(90)

ws =270, (14+3a:0) (1)
hence at sufficiently small Q, w; — 2712, which is the
well-known classical result.

The complex coefficient @3, which gives rise to a
correction in (90) of first order in (), arises partly from
a more accurate evaluation of the first term in (86)
than the approximation (89), and partly from the re-
maining terms in the series, in which Q may be set equal
to zero. The latter terms, whose structure is too com-
plex to discuss here, certainly do not vanish, and we
shall assume they do not mutually cancel. Ritchie? has
calculated @1 by considering only the first term, and
Ritchie and Marusak? have derived corrections of
higher order in Q from this term. The present formalism
does not however seem to offer any simple justification
for this approximation, and a rigorous calculation of a1
might therefore be of interest. This calculation could
be of some importance, since the real part of a; enters
(91) as a linear correction to the dispersion law for sur-
face plasmons and the imaginary part gives rise to a
damping factor proportional to Q, which might be ex-
perimentally observable. In the absence of any dissipa-
tive effects in the model, the damping is evidently of
the Landau type, originating in the decay of a surface
plasmon into a particle-hole pair. This process is not
severely restricted by momentum conservation as in
the case of bulk plasmons. In principle @; might be
calculated numerically on putting w=2""%w, and using
the identity

+7E-= A+ (A— AATA),

where the first term on the right-hand side gives the
correction of Ritchie and Marusak?” and the second may
be inverted numerically after putting Q=0 everywhere
(see Appendix A).

The surface plasmon dispersion law for a film may
also be derived from the present formalism. For anti-
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symmetric modes, (89) becomes
0 e 1
o“= 2
(1 —wp/w?) »=0 (2n+41)24-12Q%/x*
=(1—w,2/w?)~! tanh3Ql.

(92)

Similarly, for the symmetric modes we have from the
results given at the end of Sec. III

(1 —w2/w?) n=0 42+ 1PQ?/x*
= (1—w,?/w?)~! cothiQl,

9

(93)

hence, neglecting @1 and using (75), the plasmon fre-
quencies are given by

wt=w?/ (14tanh3Ql), (94a)
wt=wz?/ (14-cothzQl), (94b)

where w, and w, denote the frequencies of odd and even
modes, respectively. The simple classical results (94)
are significantly modified by including retardation
effects?®; they have also been obtained as a limiting
case in Fedder’s work.?

C. Numerical Calculations

Numerical inversion of the matrix E was used to
obtain results applicable to the metallic range of densi-
ties (2<7,<6). For simplicity, calculations have been
limited to the case of static antisymmetric one-dimen-
sional potentials (Q=0) with no interior sources. The
relevant equations are, from (50), (51b), and (42),
together with the condition s,=0,

—4V'(0)
——— 2 Eqp ' cosgx,

a,q’

(95)

(x)=

(0

op(x)= 2 [ Z:« Eq™'—1] cosgx.  (96)

wl
The electric field at the surface V/(0) is assumed to be
given. Since ¢= (2n-+1)m/l, where » is an integer, the
requirement that the E, form a discrete matrix im-
plies that ! be finite. From (46), (25), and (30), the
elements of E are

Eyp=—41dqy, q#q
Ey=4x[ ¢+ 2 Agrl,

a’#q

(97a)
(97b)

where 4 44 is given by (37).

The infinite matrix E may be truncated at g=go,
¢’ =qo for the purpose of calculation. By using the sum
rule (30) it is not difficult to show that truncation is
permissible provided that

q=>D(q0)*
% E. Economou, Phys. Rev. 182, 539 (1969).

(98)
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for ¢o sufficiently large. A sufficient condition for (98)
is that q¢Z>>\?%; if IV is the order of the truncated matrix
E, so that go=(2N-+1)x/l, this may be written
N2>>(\)2. In fact in the range of densities studied the
effect of truncation was found to be entirely negligible
for go=>4kp. Errors due to the choice of a finite value of
! exceed those due to truncation but are nevertheless

remarkably small in the range of densities studied. The
reason for this lies in the exactness of the present
approach for antisymmetric potentials at finite I, so
that when A>>1 the mutual interaction of the two
surfaces should be screened out except for the effects
of the long-range oscillatory component of 8p, which
is manifested by a very small oscillatory variation in the

xk, /m—>

0.5 1.0

F16. 5. Relative electrostatic po-
tential v within metal for a one-
dimensional perturbing potential
due to an external source as a
function of distance x from surface.
Absolute potential V(x) is given
by V=2V"(0)v/A.

v —>

r, = 6.0
—————— rs = 2.0 —
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0.l (Fermi-Thomas)
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I - !

d as calculated
essssscasess d = X'l + T/4kg
———g=X

2.0—

Fic. 6. Screening length d,
defined as d=V(0)/V'(0), as a
function of 7s. d is shown as
calculated and in the Fermi-
Thomas and corrected Fermi-
Thomas approximations.

calculated quantities as functions of I. Combination of
A>>1 with the requirement for truncation gives the
condition N>>1. In practice, if qe=>4kr and #>40,
results corresponding to the limit /—o may be ob-
tained with an error derived from the convergence as
N and g are increased to be less than ~0.29,.

A standard computer program was used to perform
the inversion, the remaining manipulations in (95) and
(96) being straightforward. The results are shown in
Figs. 4-7. At the highest electron density studied,
7:=0.1, the perturbed charge density is seen from Fig. 4
to approximate the Fermi-Thomas charge density
given by Eq. (77). The principal deviation from the
Fermi-Thomas charge density takes the form of quan-
tum oscillations arising from the requirement 8p(0) =0,

| S N LN R T o
2l d as_colculated A
....... d=X\ + 7/ 4kg
-d=X' )
Lo : =
T 0.8 ./)// .
06 4
°2 oa i
© -
0.2 .
o1 | B B N S | T R
Lol 2 4 6 .81 2 4 6 810

F1G. 7. Plot of logd versus logrs. Screening length 4 is shown as
calculated and in Fermi-Thomas and corrected Fermi-Thomas
approximations. Curve marked “Truncated electron gas’ refers
to calculation neglecting nondiagonal matrix elements (see text).

as already discussed in Sec. IV A. At electron densities
corresponding to 7;=2 and r,=6, which are approxi-
mately upper and lower bounds to the range of metallic
densities, the Fermi wavelength and Fermi-Thomas
screening length \~! are comparable and the charge
density 8o decays to a low value after only one or two
oscillations. The magnitude and phase of the residual
oscillatory part of dp at large x may be calculated from
first principles [see Eq. (B6)], and is found to be in
approximate agreement with these numerical results.
It should be noted that the maximum value of 8p in fact
decreases with 7, at a fixed V’(0), although this is
masked by the choice of units in Fig. 4. The self-
consistent potential V(x) is seen from Fig. 5 to be
insensitive to the oscillations in &p, as expected from
Poisson’s equation. At 7,=0.1, ¥ (x) is thus of approxi-
mately exponential form, in agreement with the approxi-
mation embodied in Eq. (78a).

It is convenient to introduce the screening length d,
a quantity of some experimental significance, by

d=v(0)/V'(0). (99)

The screening length is the value of x at which the ex-
ternal potential V=V"(0)x+V (0) would cross the
x axis on continuation into the metal; it is zero for a
perfect conductor and equal to A% in the Fermi-Thomas
approximation. Let us suppose there is an adsorbed
layer of ions of charge g at a distance a from the surface.
Then the resulting change in work function Ag is

Ap=4mng(a+d), (100)
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where 7 is the surface concentration of ions. Equation
(100) is exact, because the potential difference due to
the adsorbate layer depends only on the Q=0 com-
ponent of charge in the layer, not on its local distribu-
tion.!® In addition, the dipole moment of a single charge
q is given by u=2q(a+d).

The calculated screening length is shown as a func-
tion of 7, in Figs. 6 and 7. Figure 7 shows that d ap-
proaches its high-density limiting value of A~ rather
slowly. However, on combining (78b), which includes
the lowest-order correction to the Fermi-Thomas ap-
proximation, with (99), we obtain

d=N\"'4r/4kp. (101)

" As may be seen from Figs. 6 and 7, Eq. (101) is a re-
markably accurate approximation to the calculated
screening length, the error being only ~79%, at 7,=6.

In Fig. 7 we also show the results of a very simple
calculation in which the nondiagonal elements of E
were neglected. The electron gas is thus assumed to
retain its bulk properties right up to the surface, a
situation which is not, in fact, possible. This calculation
is actually equivalent to that for an infinite electron gas
with source charge distribution ¥/(0)8(x)/2r per unit
surface area, i.e., the one-dimensional version of Langer
and Vosko’s®® work on the screening of a point charge.
In this case the screening length is at most ~109,
greater than A1, showing the Lindhard screening cor-
rection to be small compared with the nondiagonal
correction.

V. DISCUSSION OF RESULTS

Before comparing the screening length calculation of
the last section with the rather limited experimental
data, it is of interest to consider briefly the relation
between the high-density formula (101) for d and earlier
treatments of the inhomogeneous electron gas. The
established procedures®? for correcting the Fermi-
Thomas approximation have been based on expansions
in powers of a small parameter (e.g. %), within the
Hartree-Fock approximation. This method has proved
rather successful in calculating metallic work functions®
and total atomic energies,* but less so for other atomic
properties.® The method fails to reproduce the quantum
oscillations associated for example with the atomic-
shell structure. In studying the power series expansion
for an exactly soluble one-dimensional free-electron
model, Payne* points out that important terms of an
oscillatory nature are not included. More recently in

1;"5_5. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
( 8 A)..S. Kompaneets and E. S. Pavlovskii, Zh. Eksperim. i Teor.
F 1%5 .;)lj 427 (1956) [English transl.: Soviet Phys.—JETP 4, 328
B Kirzhnits, Zh. Eksperim. i Teor. Fiz. 32, 115 (1957)
[English transl.: Soviet Phys.—JETP 5, 64 (1957)].

1;’2;1). M. Schey and Judah L. Schwartz, Phys. Rev. 137, A709
3 H. Payne, Phys. Rev. 137, A709 (1965).

the work of Kohn and Sham?3 on the nonuniform free-
electron gas in one dimension, a quite different ap-
proach, in which the Fermi-Thomas approximation is
supplemented with oscillatory terms arising from the
classical turning points, was found to be remarkably
successful. Now from the derivation in the first part
of Sec. IV A, it will be clear that the correction to the
Fermi-Thomas approximation embodied in (101) is
closely connected with the inclusion of quantum oscilla-
tions in the charge density associated with the require-
ment §p(0) =0, and we may conclude that the quantum
corrections of Refs. 31 and 32 are not relevant here.
A generic relation between the methods of Kohn and
Sham and the correction (101) seems therefore evident,
although the present calculation involves the Hartree
linear response and a stepwise discontinuity in potential
rather than a linear turning point.

Experimental determinations of the screening length
d for the metal-vacuum interface at present depend on
measuring the change in work function due to a layer
of adsorbed ions, whose surface concentration 7, charge
g, and radius ¢ must be known. The change in work
function Ag is then related to d by Eq. (100). An
artifact in this technique arises from the expected
penetration by the ion into the outer exponential tail
of the electronic charge density, which should lead to
smaller d than calculated by assuming the ion to rest
on the x=0 plane of the infinite square barrier charge
density. The surfaces of constant electron density at a
real metal surface will tend to some extent to follow
the underlying atomic structure of the crystal plane.
If, as seems likely, the ion is adsorbed on concave
regions of the surface, this represents an additional
penetration mechanism, further reducing d.

Additional complications may arise from nonlinear
effects due to the rather strong electric fields of the
adsorbed ions. Some idea of the magnitude of the non-
linearity may be gained from calculations based on the
full Fermi-Thomas model, of which (77) represents only
the linearized approximation. Such calculations for one-
dimensional potentials have been made numerically by
Ku and Ullman,? who report significant nonlinearities
only for normal fields V’(0) “near 10° V cm™,” and by
Tsong and Miiller,*” who have obtained the lowest-
order nonlinear corrections analytically. From the
formulas of the latter authors, the maximum error in
d in the case of a Cs* ion, for which V’(0)~5.3 V/A,
may be estimated as ~159%, at r,=4 and ~39, at
rs=2. Somewhat larger corrections are expected for
actual metal surfaces because the larger screening
lengths predicted above imply larger potentials at a
given field, and because the “local” electron density
near the surface is less than in the bulk. Nonlinearities
will also be greater for other alkali atoms, whose radius
is less than that of Cs*. It should be recalled however

35 W. Kohn and L. J. Sham, Phys. Rev. 137, A1697 (1965).

36 H. Y. Ku and F. G. Ullman, J. Appl. Phys. 35, 265 (1964).
37T, T. Tsong and E. W. Miiller, Phys. Rev. 181, 530 (1969).
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TasLE 1. Experimental screening lengths on tungsten in A.

Surface  (110) (211) (100) (111)
50 3.03.5 1.92.4 1.7,1.9 1.3,1.8
d=» 135185  0.250.75 ..00.25 . 0.15

= First value quoted is from Gavrilyuk, Naumovets, and Fedorus (Ref. 5),
the second from Sidorski, Pelley, and Gomer (Ref. 1).
b Based on Ros=1.65 A. Only positive d values given.

that linear methods are often employed® in treating the
screening of charged bulk impurities, where the po-
tential diverges. Qualitatively we expect a positive
ion to increase the electron density near the surface,
thus promoting the efficiency of screening and reducing
d, with the opposite effect for a negative species.

Measurements of 6=d--¢ have been made on tung-
sten by Gauvilyuk, Naumovets, and Fedorus,® and by
Sidorski, Pelley, and Gomer,! using Cs* ions. Results
derived from d¢/dn at n=0, assuming the charge on
Cst to be unity, are given in Table I. The § of Sidorski,
Pelley, and Gomer are generally larger than the values
of Gauvilyuk, Naumovets, and Fedorus, but the same
trend is reported by the two groups, the decrease in
calculated 8 from left to right in Table I being usually
interpreted!® as a decrease in ¢. Reasons for this are:
(a) Work function of the bare metal surface also de-
creases from left to right in Table I, so that the occu-
pancy of the virtual 6s state of Cs will increase in this
direction, and (b) overlap of the Cs and metal wave
functions should be least for the more closely packed
surfaces, such as (110), for which the virtual state
width should be minimal; this effect acts to reduce the
6s occupancy on close-packed surfaces. In addition,
penetration of the surface by the Cst ion due to
nonplanarity should be greater for the more loosely
packed surfaces, but this should result in only a small
reduction in § due to the large Cs* radius. This interpre-
tation suggests that the closely packed (110) face
yields the most reliable value for 8. Taking 1.64 A for
the Cst radius leads to screening lengths of d=1.35 A
(Gauvilyuk, Naumovets, and Fedorus) and 1.85 A
(Sidorski, Pelley, and Gomer).

The band structure of tungsten as calculated by
Mattheiss®® shows the presence of a very broad 5d
band, which can be regarded only very crudely as a
tight-binding-like one, and an sp band strongly hy-
bridized with it. If the d wave functions could be
regarded as completely corelike it would be appropriate
to consider screening by the sp band alone, which should
contain about one electron per atom since the d bands
appear to be approximately half-filled. The hybridiza-
tion should not have too serious an effect at the short
wavelengths important in the present calculation (see
for example Phillip’s®® estimates of screening in semi-
conductors) and as a first approximation the effective
value 7,~3.0 derived from the sp electron density may

38 L. F. Mattheiss, Phys. Rev. 139, A1893 (1965).
# J. C. Phillips, Phys. Rev. Letters 20, 550 (1968).
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be used in calculating d. From Fig. 6 this is seen to
predict d~1.3 A, which is as close to the experimental
results as can be expected from this crude argument.
In the opposite extreme 7, could be determined from
the full electron density of six electrons per atom, which
is the point of view taken by Smith,!” but the author
feels that the nonideality of the energy bands, pre-
sumably associated with highly anisotropic charge den-
sities, renders such an approximation suspect.

The comparison which we have made with experiment
must appear rather inconclusive, largely, due to the
complicated electronic structure of the substrate metal
which was studied. Nevertheless it has been argued
above that the experimental artifacts all act in the
direction of reducing d, and thus the observed values
of d~1.35-1.85 A greatly in excess of any likely Fermi-
Thomas screening length definitely suggest the ex-
istence of a quantum correction similar to that dis-
cussed in this paper.

Calculations have in this paper been confined to
one-dimensional potentials. An important three-dimen-
sional case is the external point charge, which repre-
sents approximately the perturbation due to an ion
outside the surface. The image energy W of a charge
q at b=(5,0,0), where 5<0, is given by W=3¢%¢(b)
in a linear response theory. Using (66), (61), and (64)
the image energy may then be expressed as

o)

1—e€q
)
0 1+4eq

this being a generalization of Eq. (22) of Ref. 21, which
applied only in the Fermi-Thomas approximation. In
view of the success of the approximate form (101) for d,
the use of the equivalent approximation (83) in (102)
suggests itself. Unfortunately the resulting expression
for W diverges at small b; at large b it approaches the
expression??

(102)

where d is given by (101). In the absence of a numerical
evaluation of (102), Eq. (103) may possibly be used as
an extrapolation formula down to values of b where use
of (83) is invalid.

(103)

VI. CONCLUSIONS

The principal results of the present investigation are
as follows:

(1) The assumptions underlying this work, namely,
the use of Hartree approximation and the choice of
“particle in a box” wave functions to describe the un-
perturbed ground state, are believed to be approxi-
mately valid at 7,~4.

(ii) The dielectric response is expressed in Fourier
representation (most generally for slab geometry) and
reduced essentially to the inversion of an infinite
matrix E. A dielectric function eq may be defined, de-



1 DIELECTRIC RESPONSE OF A SEMI-INFINITE ELECTRON GAS

pending on frequency and on a two-dimensional wave
vector Q parallel to the surface. The free oscillations of
the system (surface plasmons) occur at the solutions
of eo+1=0. In addition, for source charges outside
the metal, the classical image theorem for a semi-
infinite dielectric medium is valid at given values of Q
and frequency, provided eq replaces the classical dielec-
tric constant of the medium.

(ili) The Fermi-Thomas approximation, the lowest-
order correction to it, and the classical (high-frequency)
limit may be derived from the present formalism.
Corrections to the classical approximation, which give
the dispersion and damping of surface plasmons, are
found to be of the same form as in some previous work.

(iv) Numerical results are obtained for a static
electric field normal to the surface. The screening length
is found to be more than twice its Fermi-Thomas value
A1 in the range of metallic densities, but to be well
approximated by the expression d=A"'4w/4kp, in
which 7/4kr is the lowest-order quantum correction.
The large deviations of d from \! originate almost
entirely in the nondiagonal elements of the dielectric
matrix, and should thus be attributed to the abnormally
low electron density near the surface.

Comparison of the experimental results on tungsten
with the present theory is difficult owing to the com-
plicated electronic structure of this metal. Nevertheless
the observed screening length is compatible with a free-
electron model if 7,~3-4.

(v) For one-dimensional perturbing potentials, the
induced charge density within the metal at large
distances from the surface falls off as §~¢(sin2kpx)/22.
The constant ¢=V’(0)/8rkr at high electron densities,
if the perturbation is a normal electric field V’(0).

‘Note added in proof. L. 1. Schiff*! has recently treated
the static one-dimensional surface screening problem by
a method which avoids the assumption of an infinite
square potential barrier. Qualitatively similar results
are obtained. It is worth noting that the relation ob-
tained by Herring®? between surface screening and the
electric field just outside a nonuniformly strained metal
specimen (which in fact motivated Schiff’s work) might
make possible an experimental determination of a pre-
cisely defined surface screening parameter.
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APPENDIX A: DYNAMIC RESPONSE MATRIX

In the one-dimensional case B=0, at nonzero fre-
quency, the matrix elements are given below.
Let b=q/2kr and u=w/4€p. Then

D= A1+ L1 (54 2) Jm T

8w 1—(b+u/b)
1 2 1—(@—u/b
- —[1—({;— ff)]ml———-—( /D } , (A1)
4b b {14 (b—u/b)
D@ (u)=0, for u>b>+b
=0, for 5>1 and #<b*—b

Nu
=_£—§;’ for 5<1 and |u| < |62—b]|

)\2
= %El— (0—u/b)*]

for [62—b| < |u| <|b4b|. (A2)

Equations (A1) and (A2) are essentially the well-
known results of Lindhardt.”® The nondiagonal matrix
elements are

Apy D (u)=0, for [b—b'|>1
= , ford+d'<1
8lkp 20" —u?
N b6 1= (b—b')?]
32lkp b2b"2—u?

for 84-8’>1 and |6—0"| <1 (A3)
Abb'(”(u):(), for [b—b,l>1

TNDD’
= 1o kF[a(M~bb’)—6(u+bb’)] )
for b+b'<1
TNDY N , ,
= 64lkFEI—(6~6 200 (u—bb") —d(u+0b")],

for b4b'>1 and |6—0'|<1. (A4)

APPENDIX B: FRIEDEL OSCILLATIONS

In this appendix we discuss the long-range oscillations
in charge density associated with a static perturbation
localized near the surface. For simplicity the discussion
is confined to one-dimensional potentials, although the
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present methods should be capable of extension to the
three-dimensional case. We assume / — .

From Eq. (19a) the Fourier transform of the charge
distribution is

l
dpg=DqV4— ;" [A wVodg'. (B1)
T

Using (18b), 8p(x) is then

1 !
Sp(x)= — quDqVq cosgx— 2——2 /dq(cosqx)
Y

m
X f dg'AeeVe. (B2)

Now in the limit x —c the main contribution to the
integrals in (B2) comes from the singularities in the
integrands. In the first term the only singularity is the
well-known logarithmic singularity in D, [given by
Eq. (34)] at ¢=2kp. The function 4 ;o has singularities
along the straight lines shown in Fig. 2 (the curved
boundaries refer only to Qs0). Because, in general,
these are singularities only in derivative, it is easily
shown that they give contributions to 6p only of order
x~3 or higher. The points (0,2kr) and (2kr,0) where the
singular lines intersect represent more serious singu-
larities. The singularity at ¢=0, ¢’ =2k does not how-
ever contribute to lowest order because singx is zero
at this point. Hence the major contribution in the
second term of (B2) derives from ¢=2kr, ¢'=0. We
therefore put V,="Va in the first term, and V=V,
in the second term of (B2), which becomes

1 l
do(x) = —qu cosqx[VszDq—Vo—— /dq’Aqq':I.
=0 272

Using the sum rule (30) this may be written
2 kF 4y
Sp(x) = —[Vorp— Vo]/ dbDy cosbx’, (B3)
r—>0 T 1_7

where &’ =2kp,x b=q/2kp, and v =0%. Referring to (34)
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we see that the singular part of Dy is Dy=—N\2(1—0)
XlIn|1—b]|/8r near b=1. Putting y=>b—1 we have
Nkp
(@) = —(Varz—V)
>0 411'2

X[cosx’ Ref(x')—sinx’ Imf(x')], (B4)
where
Y
f@)=[ dye='vyln|y]
it 4
= _iwx'—2—|—0(x"3) (BS)

(for the last step, see, e.g., Lighthill®?). Combining these
results, we have

(B6)

op (x) = [Vo-— Vsz:l sinZkFx.

4%y sz

Equation (B6) relates the asymptotic Friedel oscilla-
tions to the Fourier components of the self-consistent
potential V, which are given by (50). Note that from
the definition (17) the V, are twice the normal cosine
transforms of the potential at one surface. Since at all
densities down to those found in metals we find that
Vo>Vare, the Friedel oscillations are dominated by
the V term which originates in the nondiagonal matrix
elements and thus in the nonuniform surface electron
density. Equation (B6) is found to be in approximate
agreement with the calculations of Sec. IV C.

‘At sufficiently high electron densities we may neglect
Vore and employ the Fermi-Thomas approximation
(77) in calculating Vo, hence (B6) becomes

V’(0) sin2kpx
5Posc(x) == )
87l'kp xz

(B7)

where we have also assumed the source to be purely the
normal external field V’(0). According to (B7) the
Friedel oscillations should be the same for all curves in
Fig. 4, in which 8p is plotted in units of V’(0)kr/m; this
is seen to be roughly true. A much better approximation
to (B6) is obtained on multiplying the right-hand side
of (B7) by the factor 14-w\/4kp).



